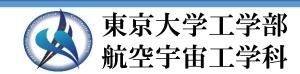


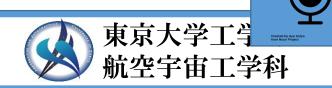
Final Presentation

Tomoyuki Yamasaki The University of Tokyo Sep. 16, 2017



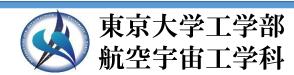
Content

- Mission Statement
- Success Criteria
- Mission Requirement(s)
- The Satellite System
- Bus System
- Payload System
- Mission Sequence
- Validation and Verification Plan/Testing
- Flight Results
- First Attempt
- Second Attempt
- Conclusion
- Recommendation and Future Plan (Mission)
- Feedback and Recommendation (CLTP)


Mission - Recording sound of HEPTA during flight

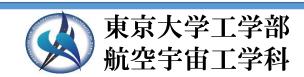
- Human use many senses to sense our environment, but satellite sends only numerical data and photo.
- Numerical data is takes time for human to analyze. Photo takes time to be downlinked. Sound is easy to send and tells us more about satellite's current situation.

 MISSION: Analyze the activity of HEPTA during launch, deployment, and landing using a condenser microphone. The recorded sound will be sent at real time and stored to microSD.



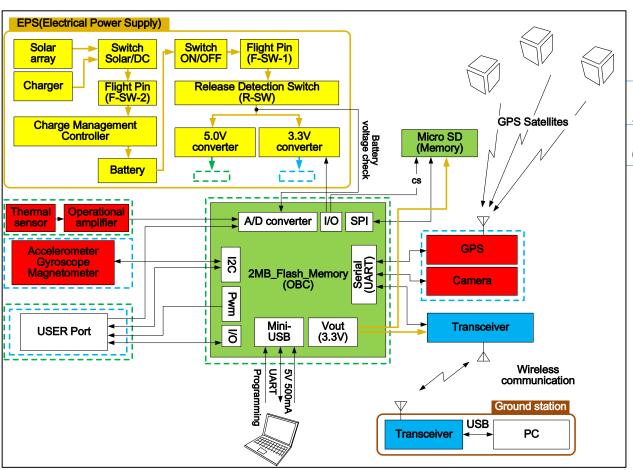
Criteria

- Minimum Success
 - Record the volume of sound only (non-audible; sampling rate \sim 2000Hz).
- Full Success
 - Identify the point of launch, deployment, and landing from the acquired data.
- Extra Success
 - Record and send audible sound of the whole launch sequence (sampling rate 4000Hz~;
 c.f. phone uses sampling rate of 8000Hz).


Mission Requirements

- In addition to bus requirements :
 - SD can be opened
 - Sound data can is observed

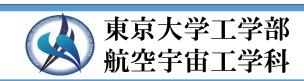
No.	Event	Requirm ent	Required Function	verification way
R-1	Preparation		• • •	
R-2	pahse			
R-3	parise			
R-4	Stanby tim e pahse	Battery voltage is 4.0 V or more	Function to charge from the External source	Confirm battery is charged
R <i>-</i> 5				
R-6			• • •	
R-7		Send the sensing start com m and	Function to send com m ands	
R –8		Receive command, wait for sensing		
•	phase	Save latitude, long itude, a ltitude, barom etric pressure		
•				
R-18	M ission phase			
R-19				
•				
•				
R-25	Analysis phase			
R-26				
R-13				



Bus System Architecture

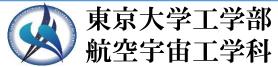
P19

3.3V


GND

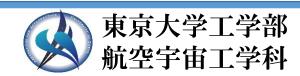
Created by Aya Sofya from Noun Project




SD Subsystem

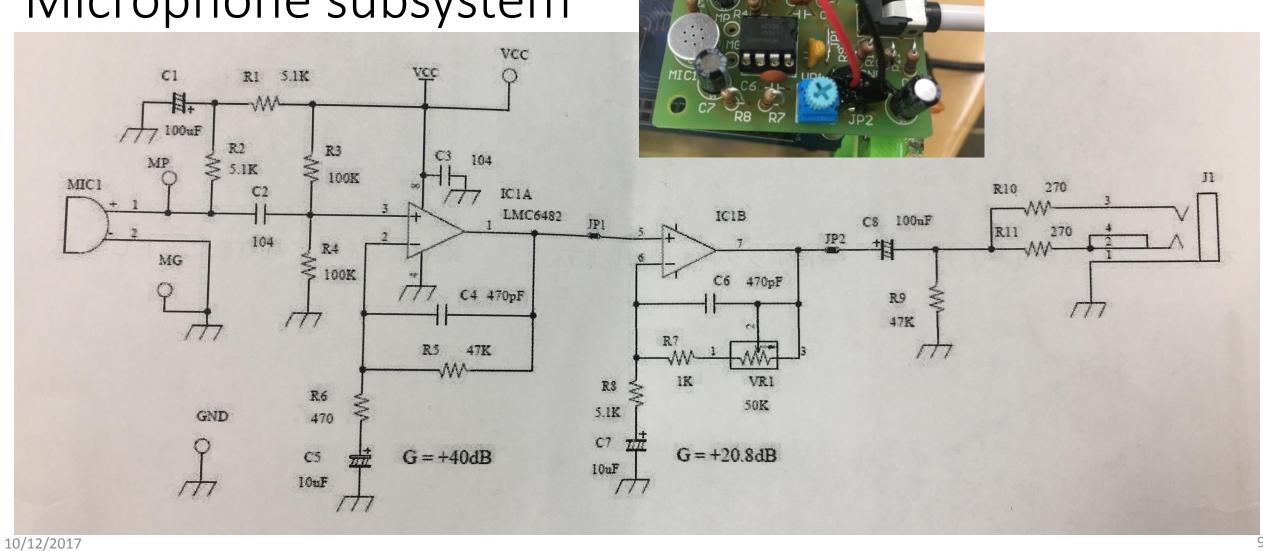
- fprintf(fp, "%c", ain.read_u16()>>8);
- Data was read from AD Converter in HEX (0 FFFF)
- Data was bit-shifted by 8 bit for compression (same as dividing by 256)
- Data was converted to ASCII and was written on SD
- Example
- 486C
- 48

```
$[ë¬ÏˇˇˇÓ″æÆ§§™≥Ω¬«≈i∏ΦûóêàÉ|sh]QA2*)1C\zóØi»…»»… …=ª´ôÑn\NB::APe{ãŏ¶≠Æ®üìÜ{pf^WOKHKR]k}ãìô£™≥∫i楣ét^L?:9<>?=81'&+:Tvöª",ÌÒÒÊ◊»¥¢ñêá|tnfXH<1*%%-9K]o{ÅÉÉÜàéúØ=◊νˇˇˇˇˇǒ◊¬ØŏárbQ=,!%2CTfvÉéóúüüüüüöòòòñîíèåéèëìóöŏöïéÖzsplknszÉäëñöû°ûŏôù°£fôç~qg^YWY^clyáìú°£§§¢†ùîçâÜÖÄÄ~}{z{zzÅáéêëçà~vpnt}
ÖåèëèèåàÖÄÜìù•¶†ÌÑwoiebchĺlotvtmféåÉ~}zzzytty|zj`bqÉçêéçèíèèìû£ûïèäÖÄÄàïòèÉ~Ñâåäââäêìîììîíà|wÑö߆ῗêïü°üîÜ∱zuuÅèŏùóäwwĆéóù•¨¨°åxrwÑäàÑÇÄ∫uj`_kx|
Üåìöûòå∼|ÅåôùñÖtqÄñ°f°ûúŏóéÜÄÅáà∼tquÅåàsZĹUlÉÍöőìÑÑçÍïóŐûû¢§†ïçååâÅzuswÅáÉvoqy|
{{{~ÉàåèéãàÉ~~Çà憎¿®ãrecivÖêîåy^FALcÄîïâwe\]`cnÂîûóåÅÉ좕ëwkrÇÑvg[OECFO`qz|
~Üêòôõ¶∑√»«i¥™ß®™•ùŏŏúñÖo[U]mÖ~slnsqnt~ë°©®°ùû•©B†üü®≠"†éÄ{tjXHFMbÄú±°∑©òÜugadmvwuwx{ÑêíÅf]drÜääÖÖâäÄpjr~ÖÄtcVTYahlpqljkf[V_qÅâåíü
′®érhyï•°ëáÉÅxdT^Ñ≠∫ØñÑ|wtrw鯿′zQELPIDHZp~oceyéìèèùÆ≤ßôåÉysmmwÉçã{cQKQX_glnqvxwyÅéôŏëÑ}z}ÑãåNqZD;@NZb˚]_eghró°Æ∏ª∂¶ëÑÑáááåỗ§®£ñÖy|áçèêö®∞±±Ø¨®£
°őåvhis}ÅÑÖÅ|z∼ãò¢ß®¢òéÉvpoty{|áëòòìêèèíò°®¢ìÉŇååÉzz}}|áñ•ØÆ§ïäáÑ|}ÅÅ|uroliks∼äìîêååíôûüùôcvtwytoggpÑùØ∞°èÜÑäêíècããCwsyÜëïéÜ{pnr~côüúòèÖ|
yzâlòñëèëő•™§íÄuszxnedguCçïòöû°§¶ßß•£°ôàynkr~äãá~vxCçóöôlêñ°′ßóCpebafmzÜèãÄvwÉëú£
°öêÑ~Ããîîå{~ÜççãáŐÖÖÉÇÑãèÍíêçççåãããgçèèåàĎáãëîíçààâàÉztsxÉéñú•®üç}yÄêü•üîÜzwutv|Ñåêèêñ†™±¥′ôÖwtzÜëôõóã|lcco~éòúóã}wuuvz}ÇÖäéíîêåÖÑÑÑÑŨãìöùôèÇ{|
ÄŇÉÄ}{zxyÜèíèŇzuw∼äìñíâyvrptåíèäÉÇÜāåãGCxtyÑçêäÄtkkvàó°¶°óä}Üóà{vxz~~{yxz∼ÉäëëçÑ{xxz}ÄÖááÜÉ|
vuyÄÜäçåãâÜÉÇÉáàáÖÖáâääẫãäçêí1111îïlêçåâààáàÁÑÉÇÄÄÅÖááááÜàäéíîlêééèèilîlëçAÜÖàâääÖÉÉÖâåääàÜÑÜáäçéëllílêéçéçåäåääÁÑÇÁÉÖÜááàÜÑÉÇÇÇÉÖÜààäåèèéãáÉÇÇÖàäåä
áÑÂÂÇÖÁÄÇèèåâÜÉÖÜÁÁÁÁBBAAÁÖÑÇÂÇÉŐÑÉÂÄ}}|~ÃÖAĞÇÂBAĞAÖÉÂÇÖÁÁÜÖÑÉÂ}~ÂÑÁAÁÖÉÂÄÄ~}}}ÇÑÖÖÑÉÇÉÉÑÑÑÉÉÖÁABAÁÑÉÉÇÑŐÁÁAAÖÑÚÁÚÁABAĞÄBAAÁBÉÇÑÜÖÉÄ~}}
ÇÑŎŇÑÖàääáÖÖÖÑÇÄÅÑáâààâåêèçååçèêèçâÑÄÄÄÖàäåäáöÉÇÇÉÜâāääááààââàààáëéçäâáÑÇÅÉŇÖÖÜááààààããååääááÜÜÁâåçééååääääåééèéçãçéëë1111ëêèèëëèéçééçåäââäá
āåçéêêèçāàâáÖÑÇÄÅÇÉÉÉÑÑÑáaåçèëíííììïïïïöööôóîìëëêåâaäåååéêêèèçèêëëëëiïóóñìíëëëêêêèèçåäàääéëëêèèíïóòôóïìèçãåçêíîîíêèççåäââààààaääåçéèêìïñññîëéçççè
íïñïlèåäàààäéíïôúùùöòïíëêëílìëéäàâåëîñïïîîîllëéåââäçëîïïíèééílìleílîîlêéåââãèílíílîîllñòõùùúòïëçäâàâäåéëïñïííílîïïïîlèçääààààâãåääöÖÑÇÉÜāĕñòòó
ïlíêéèéééèïíőöőőőïllîñőóíîêåâÜÜáààádÜŰáÜÖÖÉÇÉÇÇÄÅÉÖâääáÜÜÜáàäçĕñòóóïîíêçääâäääÜÑÇÇÉÑÜááàäãçåãäàÜÜÜäçéèèèèèéàáÑÇÉÑÖÖÑÇ∼|}
ÄÖäèêêèèëíëèçàÑÉÇÇÑáääàÜÑÑàêô†§ß′′™©®©′∞∂∂ÆŚÖÌéãààáÖÄ|wrqsw{}|zz{ÇÑÖÑÇÅ~}~ÄÇÖàåâààááÖÉÇÄ||ÇÜààáÜŰàåèèíììêåâŰÑÇÉÖÖŐÖÑÑÇÅ}
vvrpopsuvsmhdcegfdbflt~áíõûûôñóû™uπəØ®••£üúõõñêàÜâêêãÜÉÑŐÜäêòú†ùóÌîóòòîíêèééĕñóíà{songuxxwwwxw{~ÃÑâëô†£•¶•§¢°üüü†°°†ûŏôóïëéäÜÉCÅÄ}
{wsnmnqsuuvwvsmjjhqghheekvÉéö¨iœ'ó/"ÈÍÏÌËfi-«æ±ùéâáÉzsrqpnkkiknruy~ÉÜáàáÜàåëô£™Æ≠
′®§°üőóiçá~tlfbbbejpv~âï¢"≥∑πϠϠ♀♀Ω|≤"£ôêäÜÇ~zwrnkigfccceghgiihd`]^_bdeec`\XURU`tåß≈"″ٽٽٽٽ,Čʻ′č°~hXLHDCDGKS\dhjjhjr}âëîêåá|{Åäíô¢´¥π∫π≥
´°îàyvxwrq]YZam~í®ĜÅ´€fl‱Ê,ÿ¯ø∑∞ßûñä|l SGA@ĎJPU[ ^ZVUVVUVèǎ|qcVPPXq|ìß∑i«=øðÆ™Æμ櫌œÃΔ[≠ûç~vtvx{|yqbQC959DSajnnmkjms|ÜëôõòèÖ}
ulea]ZXX^sô»Ò~~~~ÙÕ¥"±Ωiº≠óyŪ0
```

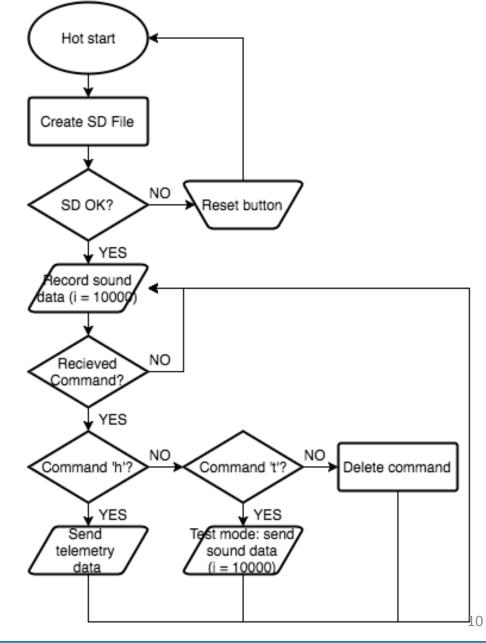


SD Subsystem - Data Analysis Method

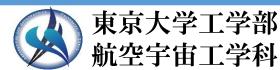
- Data was recorded to SD in ASCII.
 - One sampling data was recorded as single letter in ascii
- Data was changed to wav using Python package SciPy
 - wav array = np.fromfile(csv name+'.txt', dtype=np.uint8, count=-1) scipy.io.wavfile.write(csv_name+'.wav', sampling_rate, wav_array)

- 16.21 [seconds]/30 [loop]
- 1 [loop] = 10,000 [record]
- Sampling rate = $\frac{30}{16.21}$ * 10000 = 18507 [Hz]

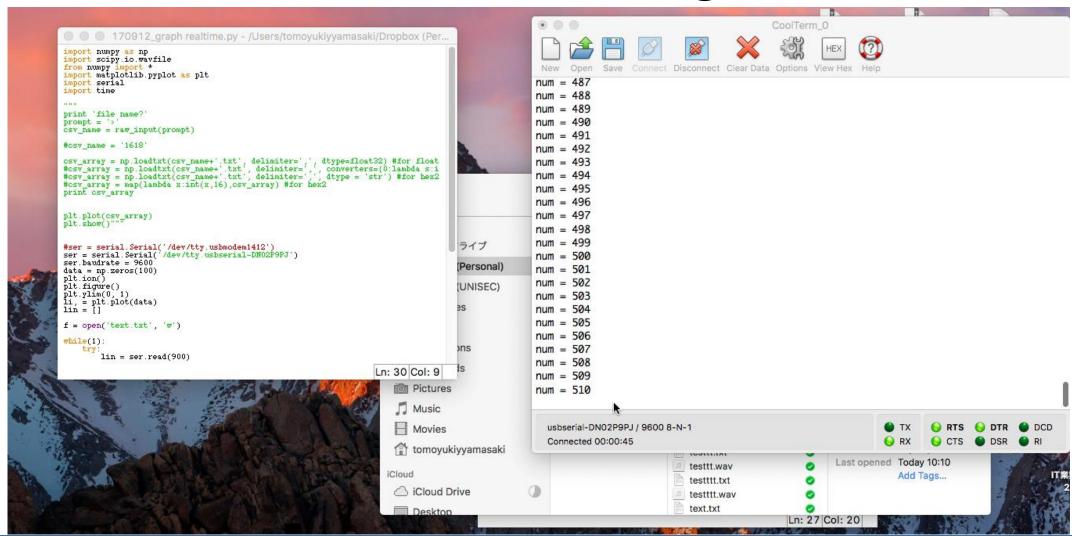


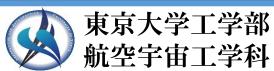
Microphone subsystem




Mission Sequence

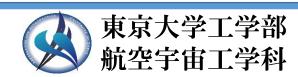
- Continuously records sound while waiting for a command
- When it receives command from ground station, it goes into test mode or sends telemetry data




Validation and Verification Testing

10/12/2017

11


Flight Result: First Attempt

No result

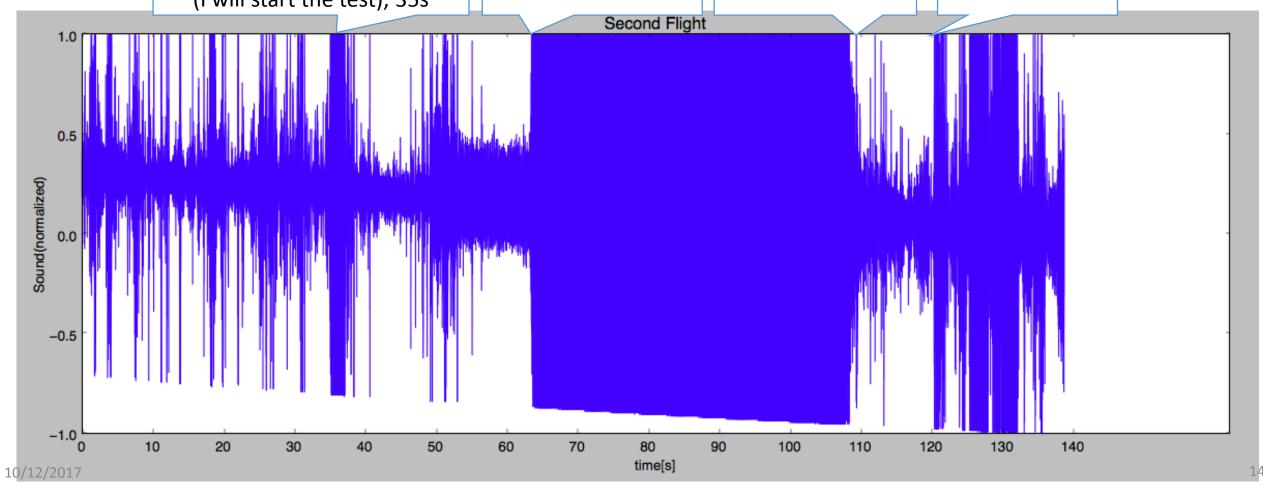
- Reason:
 - The code was written in a bad manner; Mbed deleted and rewrote the file 'text.txt' every time it was reset.
 - Reset button functioned and data was deleted upon impact of landing

Flight Result: Second Attempt

- Changed code: checked if file 'text%d.txt', i existed or not, and created the first file that did not exist.
 - It doesn't delete file when it is reset!

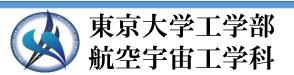
- Got audible sound data at sampling rate of 18507 Hz
- Point of launch, deployment, and landing could be analyzed

Flight Result: Second Attempt



今から試験始めます (I will start the test); 35s

Point of Launch; 63s


Deployment; 108s

Landing; 122s

Flight Result: Second Attempt

Launch;

63s

(From Launch: 0s)

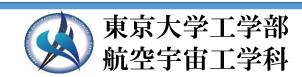
Deployment;

108s

(From Launch: 45s)

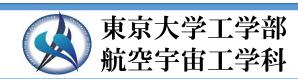
Landing;

122s


(From Launch: 59s)

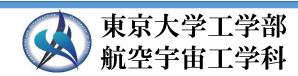
- Matches well with the data from video
- Launch Deployment; 46s Launch Landing; 60s

	CLTP-8 Drop test			2nd Drop					
	Family Name	First Name	Middle Name	knot check	Binding check	Weight[g]	wind velocity [m/s]	altitude[m]	Time[sec]
10/1	Yamasaki 2/2017	Tomoyuki		0	0	360	2.4	50	13



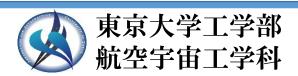
Conclusions

- Minimum Success
 SUCCESS!!
 - Record the volume of sound only (non-audible; sampling rate \sim 2000Hz).
- Full Success SUCCESS!!
 - Identify the point of launch, deployment, and landing from the acquired data.
- Extra Success Partial SUCCESS!!
 - Record and send audible sound of the whole launch sequence (sampling rate 4000Hz~;
 c.f. phone uses sampling rate of 8000Hz).
- Unsuccessful Test was done in SD saving mode; data was not sent wireless
- Successful Sampling rate was much higher than Extra Success criterion.



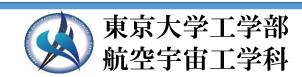
Recommendation and Future Work (Mission)

- Downlink recorded sound from HEPTA sd via Xbee.
 - Should be easy
- Decrease the gain of the circuit
 - Some sound data was going off limit
- Use a mbed with faster, higher impedance AD converter
 - Faster AD converter will increase accuracy, higher impedance will decrease noise
- Send the live audio data to ground station and play real time sound
 - Xbee communication? Sampling rate may not be enough(xbee send command will slow down the loop); converting to audio file may be difficult.
 - FM transmitter? Seems like a good way!

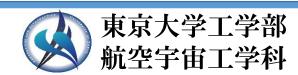


Thank you!!

Feedback and Recommendation (CLTP)

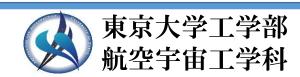

Thank you very much for this intensive course!

- More time to design mission
 - Let participant know of HEPTA's interface, they may be able to bring their own sensor
- CDR should be more critical
 - Some mission may have low possibility of success. Earlier feedback is desired.
 - May be take individual consulting time to improve each participants' mission.
- Launch can be much more efficient
 - Have each participant prepare a concrete launch sequence (what program to bring from home, what verification must be done before launch etc...)



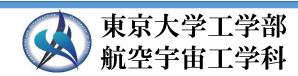
Feedback and Recommendation (CLTP)

- Example of functions
 - Some example (sample program) along with the function list would have been helpful.
 - void vol(float* bt); What happens to bt?
- Making action item and notice discrete
 - It was hard for me to understand if a slide was something that I had to do or something that I should just read and understand.
- Offline IDE might have been better
 - Sometimes online IDE server fails
 - Can be used at launch site too
- Taking picture function should be changed to not to overwrite
 - Add a line like if(fp_jpeg = fopen(fname, "r")) break;



Feedback and Recommendation (CLTP)

- Diagram of circuit
 - In paper. I want to get the big picture of how HEPTA works.
- Parts list
 - Parts list should include type number
 - Parts' bags could be labeled with Number so it is easier to find.
- Slides
 - Slide number
 - Subtitles are sometimes ambiguous (see next two slides)
- How can we go further?
 - Where to find launch, radio module that can be used from space, how to do thermal design etc.



Slide Title

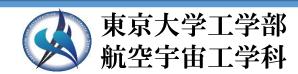
- Content A
- Content B
- Content C
- Content D

Slide Title

Content A

Content E

Content F


Content G

Am I reading the same slide??

Oh, it's a different slide!!

